182 research outputs found

    Controlling photons using electromagnetically induced transparency

    Get PDF
    It is well known that a dielectric medium can be used to manipulate properties of light pulses. However, optical absorption limits the extent of possible control: this is especially important for weak light pulses. Absorption in an opaque medium can be eliminated via quantum mechanical interference, an effect known as electromagnetically induced transparency. Theoretical and experimental work has demonstrated that this phenomenon can be used to slow down light pulses dramatically, or even bring them to a complete halt. Interactions between photons in such an atomic medium can be many orders of magnitude stronger than in conventional optical materials

    Long-distance quantum communication with atomic ensembles and linear optics

    Get PDF
    Quantum communication holds a promise for absolutely secure transmission of secret messages and faithful transfer of unknown quantum states. Photonic channels appear to be very attractive for physical implementation of quantum communication. However, due to losses and decoherence in the channel, the communication fidelity decreases exponentially with the channel length. We describe a scheme that allows to implement robust quantum communication over long lossy channels. The scheme involves laser manipulation of atomic ensembles, beam splitters, and single-photon detectors with moderate efficiencies, and therefore well fits the status of the current experimental technology. We show that the communication efficiency scale polynomially with the channel length thereby facilitating scalability to very long distances.Comment: 2 tex files (Main text + Supplement), 4 figure

    A single-photon transistor using nano-scale surface plasmons

    Full text link
    It is well known that light quanta (photons) can interact with each other in nonlinear media, much like massive particles do, but in practice these interactions are usually very weak. Here we describe a novel approach to realize strong nonlinear interactions at the single-photon level. Our method makes use of recently demonstrated efficient coupling between individual optical emitters and tightly confined, propagating surface plasmon excitations on conducting nanowires. We show that this system can act as a nonlinear two-photon switch for incident photons propagating along the nanowire, which can be coherently controlled using quantum optical techniques. As a novel application, we discuss how the interaction can be tailored to create a single-photon transistor, where the presence or absence of a single incident photon in a ``gate'' field is sufficient to completely control the propagation of subsequent ``signal'' photons.Comment: 20 pages, 4 figure

    Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals

    Full text link
    The control of one light field by another, ultimately at the single photon level, is a challenging task which has numerous interesting applications within nonlinear optics and quantum information science. Due to the extremely weak direct interactions between optical photons in vacuum, this type of control can in practice only be achieved through highly nonlinear interactions within a medium. Electromagnetic induced transparency (EIT) constitutes one such means to obtain the extremely strong nonlinear coupling needed to facilitate interactions between two faint light fields. Here, we demonstrate for the first time EIT as well as all-optical EIT-based light switching using ion Coulomb crystals situated in an optical cavity. Unprecedented narrow cavity EIT feature widths down to a few kHz and a change from essentially full transmission to full absorption of the probe field within a window of only ~100 kHz are achieved. By applying a weak switching field, we furthermore demonstrate nearly perfect switching of the transmission of the probe field. These results represent important milestones for future realizations of quantum information processing devices, such as high-efficiency quantum memories, single-photon transistors and single-photon gates

    Observation of coherent many-body Rabi oscillations

    Full text link
    A two-level quantum system coherently driven by a resonant electromagnetic field oscillates sinusoidally between the two levels at frequency Ω\Omega which is proportional to the field amplitude [1]. This phenomenon, known as the Rabi oscillation, has been at the heart of atomic, molecular and optical physics since the seminal work of its namesake and coauthors [2]. Notably, Rabi oscillations in isolated single atoms or dilute gases form the basis for metrological applications such as atomic clocks and precision measurements of physical constants [3]. Both inhomogeneous distribution of coupling strength to the field and interactions between individual atoms reduce the visibility of the oscillation and may even suppress it completely. A remarkable transformation takes place in the limit where only a single excitation can be present in the sample due to either initial conditions or atomic interactions: there arises a collective, many-body Rabi oscillation at a frequency N0.5ΩN^0.5\Omega involving all N >> 1 atoms in the sample [4]. This is true even for inhomogeneous atom-field coupling distributions, where single-atom Rabi oscillations may be invisible. When one of the two levels is a strongly interacting Rydberg level, many-body Rabi oscillations emerge as a consequence of the Rydberg excitation blockade. Lukin and coauthors outlined an approach to quantum information processing based on this effect [5]. Here we report initial observations of coherent many-body Rabi oscillations between the ground level and a Rydberg level using several hundred cold rubidium atoms. The strongly pronounced oscillations indicate a nearly complete excitation blockade of the entire mesoscopic ensemble by a single excited atom. The results pave the way towards quantum computation and simulation using ensembles of atoms

    Topologically Protected Quantum State Transfer in a Chiral Spin Liquid

    Get PDF
    Topology plays a central role in ensuring the robustness of a wide variety of physical phenomena. Notable examples range from the robust current carrying edge states associated with the quantum Hall and the quantum spin Hall effects to proposals involving topologically protected quantum memory and quantum logic operations. Here, we propose and analyze a topologically protected channel for the transfer of quantum states between remote quantum nodes. In our approach, state transfer is mediated by the edge mode of a chiral spin liquid. We demonstrate that the proposed method is intrinsically robust to realistic imperfections associated with disorder and decoherence. Possible experimental implementations and applications to the detection and characterization of spin liquid phases are discussed.Comment: 14 pages, 7 figure

    Emergent SU(2) dynamics and perfect quantum many-body scars

    Get PDF
    Motivated by recent experimental observations of coherent many-body revivals in a constrained Rydberg atom chain, we construct a weak quasi-local deformation of the Rydberg blockade Hamiltonian, which makes the revivals virtually perfect. Our analysis suggests the existence of an underlying non-integrable Hamiltonian which supports an emergent SU(2)-spin dynamics within a small subspace of the many-body Hilbert space. We show that such perfect dynamics necessitates the existence of atypical, nonergodic energy eigenstates - quantum many-body scars. Furthermore, using these insights, we construct a toy model that hosts exact quantum many-body scars, providing an intuitive explanation of their origin. Our results offer specific routes to enhancing coherent many-body revivals, and provide a step towards establishing the stability of quantum many-body scars in the thermodynamic limit

    Quantum internet using code division multiple access

    Full text link
    A crucial open problem in large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels.Comment: 29 pages, 6 figure
    corecore